

NMR Probes & Accessories Catalog

Florine Quad H/F/X/Y Solids/Liquids MAS High Temperature MAS Liquids PFG/Diffusion Liquids HR High Temp Liquids and PFG

DOTY SCIENTIFIC DOTY NMR TABLE OF CONTENTS 2024

PROBES

H/F/X/Y Fluorine Quad MAS	
Previous Generation H/F/X/Y Fluorine Quad MAS	
NB H/X or H/X/Y MAS Probes – with Low E Fields	3
WB Ultra Range H/X or H/X/Y Probes – Some Down to -180°C	5
WB Ultra Range H/X or H/X/Y Probes – Some Up to +500 °C	6
Liquids NMR and PFG/Diffusion Probes – XVT up to +300 °C	7
Liquids Diffusion/PFG (Pulsed Field Gradient) Z Gradient Probes	8
Liquids High-Resolution NMR Probes	9
Magic Angle Gradient MAS	11
SAS (Switched Angle Spinning)	13
Wideline Probes	
Wide-line NB High-Temperature (-110 to 250 °C) 3 mm H/X Probes	13

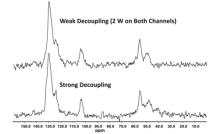
ACCESSORIES

BENCH SPINNERS AND SPIN RATE MONITORING	
Bench Spinner Assemblies	
Spin Rate Detection and Regulation (Preamp/Power Supply tachometer and Cables)	
Digital Frequency Counter	
Filtered Dual Air Regulator	14
TEMPERATURE CONTROL ACCESSORIES	. 15
Probe Exhaust Dewar	15
50 Liter Nitrogen Dewar	15
Cold-Gas Supply Systems	15
SUPPLIES	
General Accessories (Air connectors, paints, glues)	16
SPINNER SUPPLIES	
DI-3: Accessories for 3 mm DI Spinners	
DI-4: Accessories for 4 mm DI Spinners	
Sealing Cells for XC and DI Liquids and Semi-solids	
Rotors for the XC and SuperSonic (SS) MAS Spinners	
XC: Accessories for the XC MAS Spinners	
SuperSonic (SS): Accessories for the SuperSonic (SS) MAS Spinners High-Speed: Accessories for 5 mm and 7 mm MAS	23
Standard: Accessories for 5 mm and 7 mm MAS	24
	25
APPENDIX	
DOTY SPINNER ASSEMBLY MATERIALS	26
Plastics, O-ring Caps, & Extended Temperature Caps	
Ceramics	
Doty MAS Spinning Speeds	28
3mmMAS Spinning Speeds	29
TYPICAL SPECIFICATIONS FOR SOLIDS PROBES	30
ORDERING INFORMATION	.31
SALES OFFICES	-

Catalog information may be updated at any time. www.dotynmr.com

H/F/X/Y Quad MAS

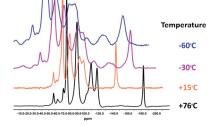
The XVT UHF Quad-MAS H/F/X/Y

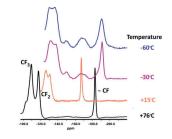

- Dedicated ¹⁹ F and ¹H channels for simultaneous operation of ¹H and ¹⁹F
- ¹H and ¹⁹F high-power decoupling with amazing isolation, efficiency, stability, and VT range
- 2 Broadband channels, X/Y
- Extended VT range: -180 to +150 $^{\circ}$ C

ULT UHF HFXY DNP is coming

H/F/X/	H/F/X/Y – Representative RF Performance, NB, Quad-tuned configuration					
¹ H Freq	Rotor	¹ Η π/2, Ρ	¹ H $\pi/2$, P ¹⁹ F $\pi/2$, P ¹³ C (X) $\pi/2$, P ¹		¹⁵ Ν (Υ) π/2, Ρ	
500 MHz	3 mm	2.0 μs, 250 W	2.0 μs, 200 W	2.5 μs, 600 W	4.0 μs, 600 W	
300 MHz	1.3 mm	1.2 μs, 250 W	1.2 μs, 200 W	1.4 μs, 330 W	2.0 μs, 450 W	
500 MHz	1.3 mm	1.4 µs, 160 W	1.3 μs, 160 W	2.0 μs, 300 W	3.0 μs, 400 W	
800 MHz	1.3 mm	1.6 μs, 230 W	1.4 μs, 240 W	2.0 μs, 680 W	3.6 μs, 700 W	
1200 MHz	1.3 mm	2.0 μs, 200 W	1.7 μs, 200 W	2.4 μs, 650 W	4.0 μs, 750 W	

MAS on a Previous Generation 3 mm Doty H/F/X/Y 500 MHz Probe In the 4 Channel Tuning Mode ¹³C observe, simultaneous ¹H/¹⁹F decouple


(Also H/F or H/F/X Probes)


 ^{13}C NMR of fluoropolymer, Viton, 24 kHz MAS, with simultaneous ^{1}H and ^{19}F decouple

Temperature Dependence of ¹⁹F NMR - Viton

¹⁹F of fluoropolymer, Viton
80 kHz 1H decoupling at 500 Mz
20 kHz MAS, 3 mm rotor, at 76°C

Expansion of the Region 100 to 220 ppm of the ¹⁹F MAS of Viton

Acknowledgement: NIH R44GM119937

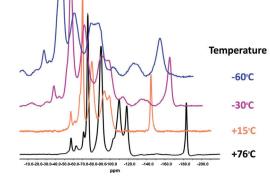
Previous Generation H/F/Y/Z

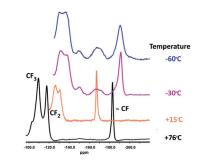
500 MHz, NB, H/F/X/Y 3 mm MAS Probe with 2 Broadband Channels

Acknowledgement: NIH R43GM119937

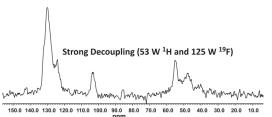
Fluorine Quad H/F/X/Y HR-Solids

Solids Quad Resonance 4 Efficient, High Power RF Channels


- Dedicated ¹⁹ F and ¹H channels for
 ¹H <u>and</u> ¹⁹F operation simultaneously
- Enables ¹H and ¹⁹F high-power decoupling (and ²H decoupling on the X channel)
- 2 Broadband channels, X/Y
- High resolution
- Extended VT range: NB -150 to +150°C


MAS on a Previous Generation 3 mm Doty H/F/X/Y 500 MHz Probe In the 4 Channel Tuning Mode

Temperature Dependence of ¹⁹F NMR - Viton


¹⁹F of fluoropolymer, Viton
80 kHz 1H decoupling at 500 MHz
20 kHz MAS, 3 mm rotor, at 76°C

Expansion of the Region 100 to 220 ppm of the ¹⁹F MAS of Viton

¹⁹F MAS (18 kHz) of Viton No increase in noise during decoupling ¹³C MAS (24 kHz) of Viton, ¹H and ¹⁹F decoupling with low noise and excellent isolation between the ¹H and ¹⁹F channels

-50.0 -60.0 -70.0 -80.0 -90.0 -100.0 -110.0 -120.0 -130.0 -140.0 -150.0 -160.0 -170.0 -180.0 -190.0 ppm

2

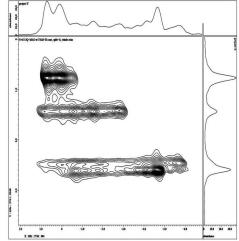
H Decoupling 58 Watts

NB H/X or H/X/Y MAS Probes

For S/N, RF field Strength, and Extended Temperatures. H/X or H/X/Y.

- Low E ¹H Coil
- High-Q solenoid for X and Y
- Highest S/N:

4 mm ¹³C – S/N of 205:1 on 50 mg of Glycine 3 mm ¹³C – S/N of 103:1 on 18 mg of Glycine S/N of 258:1 on 18 mg of HMB (spectrum below)

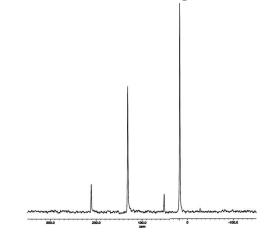

• Highest rf Field Strength and Efficiency:

 13 C $\pi/2$ pulse of 1.3 μs with only 640 W at 125.7 MHz. 3 mm Bmax with H/X tuning.

- Wide VT Ranges
 Standard VT Range

 -80°C / +120°C for NB
 Extended VT Range
 -150°C / +150°C for NB
- Low Thermal Gradients

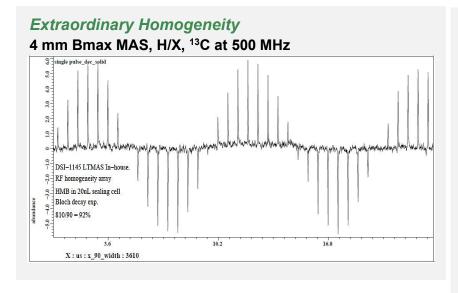
MQMAS on kyanite, 3 mm Bmax


Artifact free MQMAS 2D spectrum on 5/2 ²⁷Al transition of kyanite at 500 MHz.

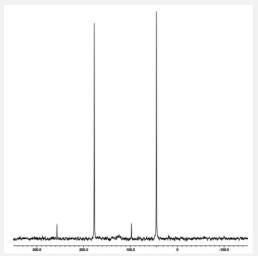
Spectrum: Mike Frey (Jeol), Paul Ellis, and George Entzminger (Doty Scientific).

NB 3 mm Bmax MAS with low E outer decoupling coil, and inner X/Y solenoid.

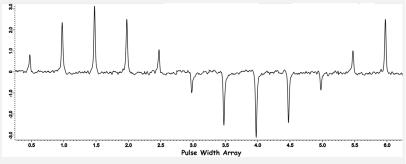
HMB (18 mg) 3 mm Bmax CP/MAS ¹³C at 500MHz H/C tuning, S/N 258:1


During CP $\gamma B_1/2\pi$ was 58.5 kHz with powers of ^1H at 92.5 W and ^{13}C at 53.0 W.

Doty NB H/X or H/X/Y MAS Probes


For Superior S/N, Homogeneity, and Fast Stable Spinning

Compatible with Bruker, JEOL, Agilent, Tecmag, and Q.One

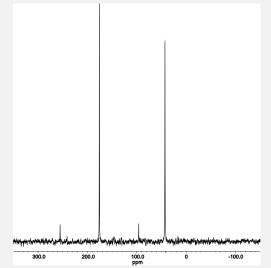

Highest S/N

4 mm Bmax CP/MAS at 500 MHz S/N=205:1, ¹³Cα-glycine (49.7 mg) 4 scans

Exceptional RF Field Strength

3 mm Bmax MAS, H/X, 500 MHz, ^1H 1.3 μs $\pi/2$ for ^{13}C with 640 W and 75 kHz ^1H decoupling

Nutation plot for ¹³C Bloch decay using HMB. The methyl carbon is the only resonance displayed.

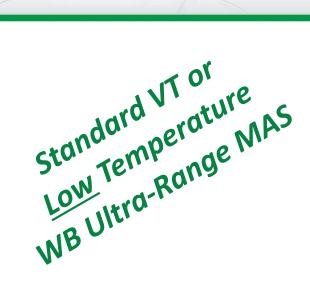

Narrow Bore Sample Temperatures: -80°C to +120°C for Standard VT Range -150°C to +150°C for XVT (extended VT)

MAS Spinner Assembly Options

3 mm DI-3	Drop-in	28 kHz
4 mm DI-4	Drop-in	18 kHz
4 mm XC4		22 kHz
5 mm XC5		18 kHz

¹H with 97.4 W and ¹³C with 53 W. ¹H decoupling 97.4 kHz TPPM, ramped-CP at 62 kHz for 7.5 ms, 10 kHz MAS.

3 mm Bmax CP/MAS, at 500 MHz SN=103:1, ^{13}C $\alpha\text{-glycine}$ (21.9 mg), 4 scans



 ^{1}H with 97.5 W and ^{13}C with of 53 W. During CP, $\gamma B_{1}/2\pi$ was 58.5 kHz. 10 kHz MAS.

WB H/X or H/X/Y Ultra-Range MAS Probes

The Low Temperature model provides operation down to -180 °C. 3 mm only.

- For WB Magnets Only, 300 MHz to 700 MHz
- Broad Temperature Ranges
 Standard VT: -140 °C to +170 °C
 Low Temperature (LT): -180 °C to +170 °C
- Broad Tuning Range with tuning inserts ³¹P to ¹⁰³Rh
- Double-Tuned ¹H/X or Triple-Tuned ¹H/X/Y Note: the ¹H/X/Y triple-tuned probe can be converted to double-tuned ¹H/X by disconnecting the third channel.
- Broad Range of Standard VT Spinner Options 3, 4, 5, or 7 mm
- Low Thermal Gradients, < 4 °C Over Sample Length

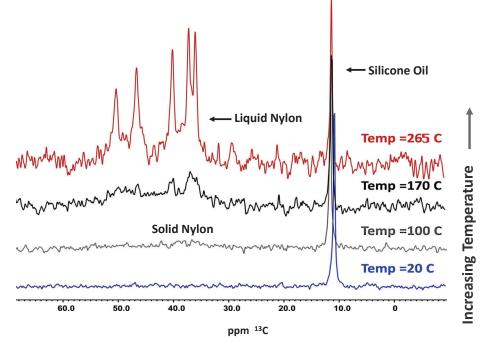
HT - WB H/X or H/X/Y Ultra-Range MAS Probes

The High Temperature model provides operation up to +500 °C. 5 mm only.

- For WB Magnets Only, 300 MHz to 700 MHz
- Broad Temperature Ranges
 Extended VT (XVT): -140 °C to +260 °C
 High Temperature (HT): -100 °C to +500 °C
- Broad Tuning Range with tuning inserts ³¹P to ¹⁰³Rh
- Double-Tuned ¹H/X or Triple-Tuned ¹H/X/Y Note: the ¹H/X/Y triple-tuned probe can be converted to double-tuned ¹H/X by disconnecting the third channel.
- Broad Range of XVT Spinner Options 3, 4, 5 or 7 mm
- Low Thermal Gradients, < 4 °C Over Sample Length

Liquids NMR and PFG/Diffusion

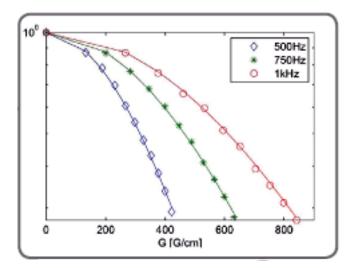
Liquids Probes also with Powerful Z Gradients


- NB or WB.
- Extended Temperature (XVT) to +300 °C with sample size 5 mm
- Standard VT -40 °C to +60 °C with sample sizes
 5 mm to 20 mm
- Many tuning options: H/X/lock, H-F/X/lock, H/C/N/lock, H/F/X/lock.
- Pulsed gradient >3000 G/cm with water cooled Z-gradient.

XVT Liquids Probe with Z gradient coil H-F/X/²H Lock 300°C, 5mm NB

HR Liquids NMR Probe without gradient

Access a wide range of temperatures. Shown here is the temperature dependence of the ¹³C spectrum of Nylon 6,6 in silicone oil.


- > High magnetic fields up to 900 MHz
- Measures lowest diffusion coefficients – to 10⁻¹⁵ m²/s/
- > Optimized for minimal eddy currents
- Highest strength gradients
- Best thermal stability
- Excellent mechanical stability
- Exceptional gradient uniformity (~1%) over a large sample volume.
- > High spectral resolution
- > ¹H/X, direct or indirect detect

Sample Temperature Ranges:

Std VT range, NB or WB: -100/+160C with water cooling Std VT range, NB or WB: -50/+80C with air cooling 5mm XVT, NB or WB, 20-40c: -140/+300C, water cooling 8mm XVT, NB or WB, 20-40c: -100/+160C, water cooling

Liquids PFG/Diffusion Z Gradient Probes

Doty 300MHZ, 16-38 Z Gradient, Diffusion Probe Results

Experimental (markers) and fitted (lines) signal attenuation as a function of diffusion gradient amplitudes and frequencies; oscillating gradient spin echo (OSGE).

Courtesy of: Junzhong Xu and Prof. John Gore, Vanderbilt University, Nashville, TN, US

Gradient Coil Parameter	Model 16-38	Model 20-40C	units	
Outside diameter	38	39	mm	
Diameter of rf shield	16	20	mm	
Clear I.D.	14	17.5	mm	
Cooling method	Water*	Water *		
Continuous gradient	341	180	G/cm	
Continuous gradient	3.4	1.8	T/m	
Pulse gradient	3320	1380	G/cm	
Duty Cycle	1.1%	1.7%		
Gradient gain, α	455	180	mT/A/m	
Continuous current	7.5	10	Α	
Peak current	73	77	Α	
<i>d</i> i for 4% local deviation	6	12	mm	
z _i for 4% local deviation	11	28	mm	
DC resistance, R _E	1.7	1.6	Ω	
Inductance, <i>L</i>	158	209	μH	
Slew rate, $\alpha V/L$, at 1 V	2870	860	T/m/s	
*Air cooling is possible, but results in a 50%				

reduction in current for a given duty cycle.

Liquids NMR Probes

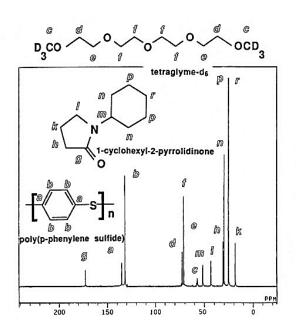
Liquids NMR Probes Standard, Unique, or Custom

Narrow Bore or Wide Bore

Standard VT -100°C to +160°C

5 mm to 20 mm Sample Options

¹H/X Direct or Indirect Detect


Many Tuning Options:

H/X/Lock, H-F/X/Lock

H/C/N/Lock, H/F/X/Lock

Extended Temperature (XVT) to +300°C - With 5 mm

NB or WB Perfusion Probes

HR Liquids NMR Probe

High-Temperature High-Resolution ¹³C spectrum of 30 wt % of PS2 in 1-cyclohexyl-2- pyrolidinone at 270°C. *Courtesy of B.Wade and A. S. Abhiraman, Georgia Institute of Technology and by S. Wharry and D.Sutherlin, Phillips Petroleum.*

Custom Liquids High-Resolution NMR Probes

PFG, Inverse, MRI, Quad-Tuned and more

Doty Scientific, an established leader in large-sample high-resolution (liquids) coil technology and solids NMR, is using the latest in laser cutting, compensated laminates, and thermal gradient minimization with alumina coil forms to bring its Super-B1 coils to the field of highresolution liquids NMR.

Like the 20 mm probe shown on the right, larger samples, higher temperatures, and special tuning are customary for Doty probes.

A few other distinctive probes we have provided are:

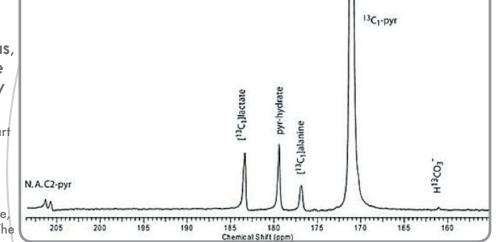
- 5 mm H/X/lock, low gamma liquids, XVT to 260 °C, 400 WB
- 5 mm H-F/X/lock diffusion, 3000 G/cm, XVT to 140 °C, 400 WB
- 15 mm H/X liquids, low ¹³C background, 600 WB

A 20 mm H/X Liquids Probe

Examples of Custom Liquids High-resolution Probes			
18 mm	¹ H/X liquids 600 NB, Perfusion, low ¹³ C background,		
25 mm	¹ H/X 400 MHz WB, Perfusion		
10 mm	¹ H/ ¹⁹ F/X/lock, 400 MHz WB, Multi-X, Triple		
5 mm	¹ H/X/lock, 600 MHz NB, Inverse, 1500 G/cm PFG		
15 mm	¹ H/X, 600 MHz NB, Multi-X, Microscopy, 25 G/cm continuous		
5 mm	¹ H/X/lock, 1067 MHz (1.07 GHz) NB Multi-X, PFG, 77 G/cm continuous		
20 mm	¹ H/X/lock, 400 MHz NB		
5 mm	¹ H/X/lock, 750 MHz NB 3000 G/cm PFG		

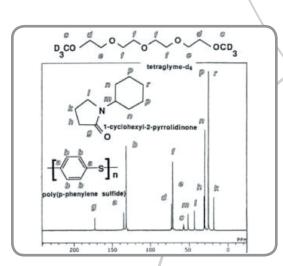
place of Custom Liquide Ligh resolution Probas

Research Results

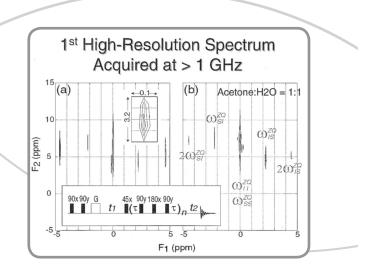


Results at the Advanced Imaging Research Center, Southwestern Medical Center at Dallas, Texas, USA, demonstrate the quality and versitility

of Doty liquids probes.


¹³C spectrum for a perfused hear in DOTY 25 mm ¹H/X liquids probe at 9.4 T.

The heart was perfused with hyperpolarized 2 mM [1-13C] pyruvate and natural abundance, unpolarized 2 mM octanoate. The metabolic products lactate and


alanine are visible after a single 66 degree detection pulse. The octanoate effectively blocks production of the bicarbonate, which would normally be about the size of the lactate. The linewidths were ~12 Hz for ¹³C on the beating heart.

Spectrum courtesy of: Dr. Matthew E. Merritt, Assistant Professor, Advanced Imaging Research Center, Southwestern Medical Center at Dallas.

High-Temperature High-Resolution ¹³C spectrum 30 wt % PPS2 in 1-cyclohexyl-2-pyrolidinone at 270°C.

Courtesy of B. Wade and A. S. Abhiraman, Georgia Institute of Technology and by S. Wharry and D. Sutherlin, Phillips Petroleum.

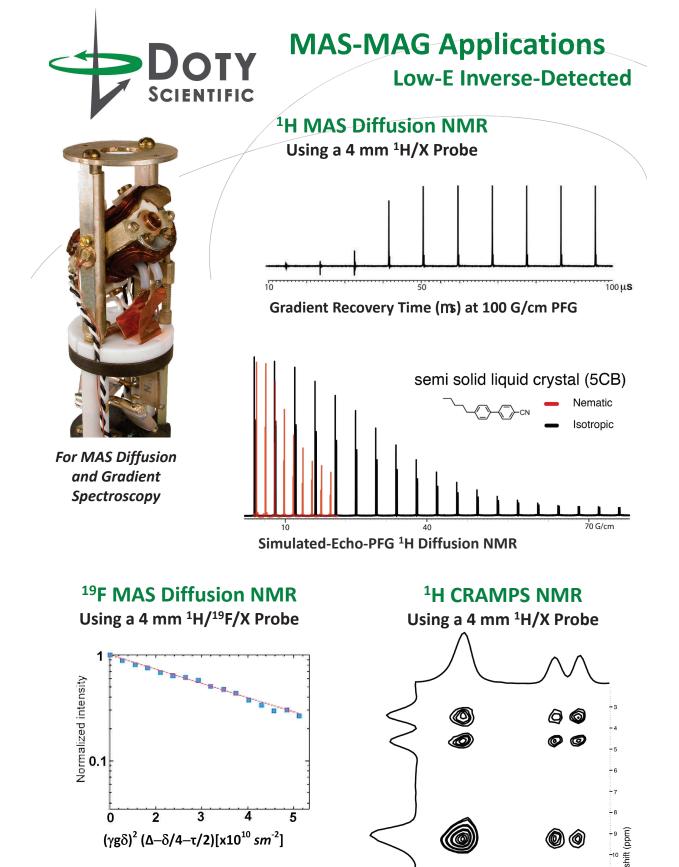
NB 1067MHz 1H/X (with 2H Lock) PFG Diffusion Probe

Spectra Courtesy of Dr Warren Warren (Princeton) and NHMFL, Florida

Magic Angle Gradient MAG MAS Probes

... For gradient spectroscopy and diffusion.

Ultra-high gradients 400 G/cm PFG at 14 T Exceptional recovery High resolution Wide VT range H/X/Y/lock NB or WB Probes



500 MHz, H/X 4 mm NB MAS Probe with Magic Angle Gradients

solids (powder) semi-solids viscous liquids H DIPSI-2 water 20 Diffusion constant (10⁻⁹ m²/s) ASAP-HMQC 50.0 DOSY RFDR DEC 8 100.0 €nτ. 150 150.0 ¹³C (ppm) (mdd) 130 ¹H (ppm) 10 ¹³C (ppm) 150 100 50 ¹H (ppm) 5.0 0

MAS NMR data:

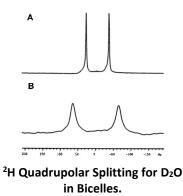
- A) Radio frequency driven rotational resonance (RFDR) ¹³C/¹³C correlation spectrum of uniform ¹³C, ¹⁵N-Leucine powder, *4 scans*;
- B) Inverse ¹H detected heteronuclear multiple quantum correalation spectrum of 4-cyano 4'-biphenyl nematic liquid crystals in natural abundance, *2 scans*;
- C) Single-scan diffusion-ordered 2D spectra of 4-cyano 4'-biphenyl in chloroform and water.

PGSE decay curve with diffusion time of 30 ms. The self-diffusion coefficient for F^{-} at 40°C in polymeric fluoride ion conductor was measured to be in the 2x10⁻¹⁰ - 4x10⁻¹⁰ m²s⁻¹ range depending on the type of material.

Doty Scientific would like to thank Dr. F. Ziarelli and Prof. Dr. S. Viel, Aix-Marseille Université. *Pasquini et al., ChemPhysChem. 2015, 17, 363.* Two-dimensional ¹H detected homonuclear correlation spectrum of Glycine powder. 300 MHz ¹H spectrum was recorded under 7 kHz MAS and wPMLG3 acquisition.

10

I


H shift (ppm)

SAS – Switched Angle Spinning Probes

In response to the new applications for SAS, we have developed a SAS probe with more durable, fatigue-resistant leads – for up to 500,000 flips before replacement. Precise computer control of angle setting (via a servo motor) results in magic angle setting reproducibility during SAS of >0.015°, with a 60 ms settling time. Tuning can be H/X or H/X/Y with 3, 4, or 5 mm spinners. For Wide bore magnets only. A manually controlled goniometer probe for Variable Angle Spinning (VAS) is also available for WB magnets.

A) spectrum for sample rotating at θ =80°. B) spectrum on rotating sample obtained with SAS from θ =80° to θ =10°.

Laura Holte, Doty Scientific, Inc.

The wide range of available options listed below offers exceptional versatility, usually all you'll need.

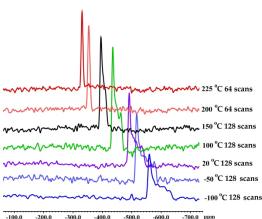
However we also offer unique probes – such as *the wideline 3 mm narrow bore H/X probe* (shown below) *with a temperature range to 250 °C and impressively low ¹H background signals.*

Available options:

- 3 mm, 4 mm, 5 mm, 7 mm, 8 mm, or 10 mm (WB only) sample
- Wide Bore or Narrow Bore probe
- ♦ -80°C to 120°C, Standard VT for NB
- ♦ -160°C to 200°C, XVT for NB
- ◆ -110°C to 150°C standard VT for WB
- ◆ -170°C to 250°C, XVT for WB
- H/X, Double resonance with multinuclear observe
- H/X/Y, Triple resonance with multinuclear observes
- A low cost ²H only option is available, which can be tuned for use at more than one field strength

A probe is delivered with ten sample containers and 20 plugs.

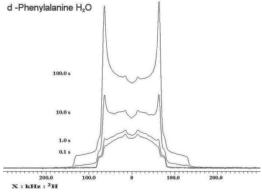
Wideline 3 mm NB H/X Probe to 250 °C


- Ceramic Housing and Coil Support Enables:
 - High Temperature Operation
 - Protection of the Coil and Sample
 - Minimal Background Signals
 - (Ultra Low ¹H Background Option)
- High-power decoupling
 - 1.5 μs ^{1}H $\pi/2$ pulse at 600 MHz with 230 W 2.5 μs ^{13}C $\pi/2$ pulse at 150.9 MHz with 350 W
- H/X, Double resonance with multinuclear observe
- H/X/Y, Triple resonance with multinuclear observe
- Extended VT range: NB -110 °C to 250 °C (WB -110 °C to 320 °C)

Sample temperature measured by ²⁰⁷Pb(NO₃)₂ chemical shift

The times above indicate relaxation delay. The probe

is tunable to ²H at 400, 500, or 600 MHz ¹H freq.


Courtesy of Michael Frey, JEOL USA.

d. ²H Quad

Wideline Probes

²H Quad Echo data on a JEOL ECA600 and a Doty ²H Wideline Probe tuned for Use at 9.4, 11.7, and 14.1 T.

Bench Spinner Assemblies

Bench spinners enable researchers to spin-pack samples and test sample balance on the bench. Some stators in bench spinner assemblies have thicker walls for added durability.

Bench Spinners *

# 95701	3 mm DI	\$14,128
# 95723	4 mm DI	. 13,560
# 95719	4 mm XC	13,560
# 95720	5 mm XC	. 13,560
# 95715	7 mm XC	. 13,560

A spin rate preamp and cable (shown above) is supplied with the bench spinner and included in the price. **A 40%** *discount will be given on a bench spinner ordered on the same purchase order with a corresponding probe.*

Spin Rate Detection and Regulation

# 99560	Spin Rate Detection Preamp / Power Supply 115 V		\$3270
# 99455	Spin Rate Detection Preamp / Power Supply 230 V		\$3270
# 98930	Spin Rate Detection Preamp Cable for Optics	1	\$106
# 98931	Spin Rate Detection Preamp Cable for Tribo		\$106
# 69300	Digital Frequency Counter		\$683
# 91581	Filtered Dual Air Regulator		\$3,327

(US\$ -Foreign prices higher, plus taxes.)

Temperature Control Accessories

Extended Temperatures

Doty probes have variable temperature capabilities, and extended temperature options are also available.

Wide Temperature range:

- -80°C to +120°C for NB Std VT
- -140°C to +170°C for WB Std VT
- -150 to +150°C NB XVT (extended VT)
- -150 to +250°C WB XVT (extended VT)
- -170°C LXVT (NB and WB low extended VT) (with a Doty temperature controller).

To extend the temperature range, we add extra insulation and thermal baffles, utilize special materials, add additional room air, and in some cases, add extra dewars to the probe.

For Probes with Extended Temperatures above 160°C and below -100°C the hot or cold gases must be exhausted away from the magnet. With some probes including the wide bore triple-tuned *H/X/Y* Ultra-range **MAS probes** (high temperature or low temperature), cryogenic probes, PFG probes, Liquids Probes, and a few other special probes the VT gas is exhausted with a tube out the base of the probe. In **most** Narrow Bore, and Wide Bore double-tuned H/X MAS probes, a Probe Exhaust Dewar (listed below) will exhaust the VT gas out the top off the probe.

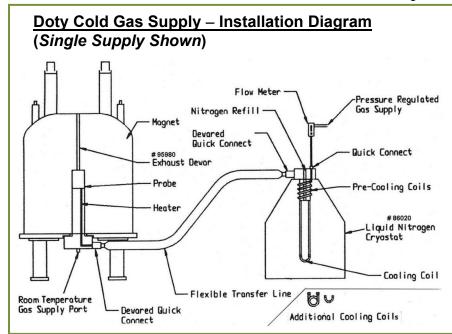
Probe Exhaust Dewar

In **most** Narrow Bore MAS probes and Wide Bore double-tuned H/X MAS probes, a Probe Exhaust Dewar is required for sample temperatures above 160°C and below -100°C. The exhaust dewar is included in extended VT probe options but may be ordered separately. Please supply the probe serial number when ordering to ensure the proper dewar is supplied. **# 95980 Probe Exhaust Dewar \$ 1010**

50-Liter Liquid Nitrogen Dewar

This dewar is intended to be used with the Doty Cold-Gas System. (A Nitrogen Dewar already owned or purchased locally may be used if compatible with the coldgas system, however specifications must match.)

86020 50-Liter Liquid Nitrogen Dewar.... \$2140 Cold-Gas Supply Systems


Doty cold gas supplies include a heat exchanger with one, two or three intertwined pre-cooling coils; appropriate cooling coil sets; and one, two or three transfer lines to carry the cooled gas to the probe. (The pre-cooler counterflow heat exchanger in the neck

of the storage dewar greatly improves cooling efficiency – an important consideration for extended runs.)

The heat exchanger connects to the Doty probe with flexible, foam-insulated transfer lines with fully dewared quick connects. This system provides efficient cold gas supply for temperatures down to -150°C. The cold gas supply shown below is connected to a probe at one end and connected to a flow meter and regulated gas supply on the other. This system is designed to be used with the standard 50-liter nitrogen dewar and probe exhaust dewar, (listed in the left column) both of which <u>must be ordered separately</u>. (A special Cold Gas system "The LN2-I" is supplied for LXVT. See the previous page)

99860 Single-Supply Cold-Gas System ... \$4,040 This cold-gas supply is for, standard speed or wideline probes and other single-supply applications. Also for OptiMAS[™] cold zone cooling when VT gas is supplied by a separate system.

95970 Dual-Supply Cold-Gas System \$5,940 For spinning with separate bearing and drive or for other dual-supply applications. (Includes two intertwined precooling coils, two cooling coil sets, and two transfer lines.)

General Accessories (Air Connectors, Paints, Glues)

Item	Part #	Price US\$
#96383-XVT This XVT version is used for low temperature experiments – without a Doty cold gas VT system.		\$ 140
# 96383 Brass Snap Tite Probe Air Connector with male quick connect	# 96383-XVT	(XVT) \$ 165
Filtered Air Line with Female Quick Connect These airlines are used for room temperature air cooling and other non-MAS probe air requirements.	# 96382	\$ 82
Filtered Air Line with Female Quick Connect – For MAS These MAS air lines have internal channels that reduce turbulance at the drive and bearing inlets on MAS probes.	# 96382-MAS	\$ 121
Filtered Air Line with Male Quick Connect	# 90617	\$ 82
Quick Connect Set Female Quick Connect Male Quick Connect	# 96390	\$ 66
	# 58560	\$ 33
# 96390 # 58560 # 58550	# 58550	\$ 33
Ball and Clamp Probe Air Connector to male connect (Used on Early Probes)	# 96381	\$ 82
Optical <u>Rotor</u> Paints	# 96109	\$ 95

(US\$ – Foreign prices higher, plus taxes.)

We have new, more robust turbines for DI-3 and DI-4 rotors. We are phasing these in beginning with Torlon and GFT. The new design includes modified turbine blades and a threaded hole with a different thread pitch thus necessitating a new Insertion and Removal Tool with matching thread. (New spacers will have the new thread as well.) We will continue to supply which-ever turbine puller you need (or both).

Item	Turbine and Spacer Insertion and Removal Tool	Thread
DI-3 Turbines		Part No: 06027 0-80 THREAD
Note how the turbine blades are connected to form a ring around the threaded hole. New DI-3 Turbine		Part No: 03516 M1.2 – 25 THREAD

Accessories For 3mm DI (Drop-in) Spinners

For material specifications: http://dotynmr.com/download/Materials-and-Speeds-Data.pdf

DI-3 <mark>Rotor Length =17.8 mm</mark> Low density* Spinning max Thick Wall Rotor – Max. 28 kHz		Spinning max	DI-3 Sample Volume: Without spacers = 36.5 μ I <i>With spacers</i> = 13.6 μ <i>I</i>	Front DI Turb	vine	Rear DI Tip Cap
Please	Please note: Although the front turbine and rear tip cap are sold separately, a pair consisting of a front turbine and a rear tip cap, are needed for spinning.					
Part #	Price		Description			um Spin Speed*
			3 mm Rotors and Caps			
46082	\$690	3 mm rotor – Silico	on Nitride			26 kHz
46082- P	765	-	con Nitride - Painted Bench Spinners with optical dete	ection		26 kHz
		3	mm DI Turbines and 3 mm ⁻	Tip Caps		
46083	\$80	DI 3 front turbine cap – <i>GFT</i> (glass filled torlon)		26 kHz		
46084	80	3 mm Rear Tip Cap – <i>GFT</i> (glass filled torlon) 26 kHz			26 kHz	
46252	80	DI 3 front turbine cap – Torlon (can use with <i>GFT</i> Tip) 26 kHz				
46072	80	3 mm Rear Tip Cap – Torlon 26 kHz				
46077	80	DI3 front turbine cap – Aurum 18 kHz		18 kHz		
46076	80	3 mm Rear Tip Ca	3 mm Rear Tip Cap – Aurum 18 kHz		18 kHz	
46075	80	80 DI 3 mm front turbine cap – Kel-F 1		11 kHz		
46074	46074 80 3 mm Rear Tip Cap – Kel-F 11 kHz			11 kHz		
Part #	Part # Price Cap Pullers and Accessories					
03516	03516 \$80 DI3 Turbine Insertion and Removal Tool					
96195	6195 125 Rotor Holder and Plungers – tools for tip cap and rear spacer removal					
96501 185 Sample Packing Set for 3 mm Rotors						

Accessories For 4 mm DI (Drop-in) Spinners

We have new, more robust turbines for DI-3 and DI-4 rotors. We are phasing these in beginning with Torlon and GFT. The new design includes modified turbine blades and a threaded hole with a different thread pitch thus necessitating a new Insertion and Removal Tool with matching thread. (New spacers will have the new thread as well.) We will continue to supply which-ever turbine puller you need (or both).

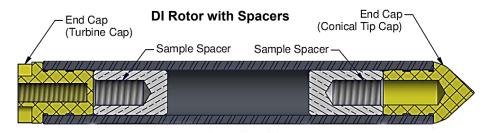
Item	Turbine and Spacer Insertion and Removal Tool	Thread
DI-4 Turbines		Part No: 01003 1-72 THREAD
Note how the turbine blades are connected to form a ring around the threaded hole. New DI-4 Turbine		Part No: 06027 0-80 THREAD

> Thick wall rotors and Torlon caps are provided for **fastest spinning.** DI4 Thin wall rotors and caps are available for maximum signal to noise. The maximum speed of thin wall rotors is about 50% the maximum speed of thick wall rotors. Teflon, Kel-F or PPS spacers are provided for highest homogeneity and rf field strength.

For material specifications: http://dotynmr.com/download/Materials-and-Speeds-Data.pdf

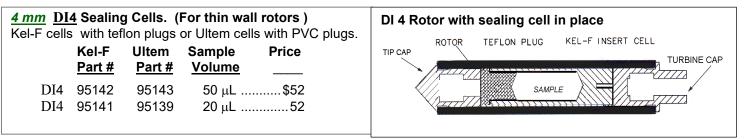
<u>4 mm</u> DI-4	DI4Sample Volume :	Front	Rear
Rotor Length =24.95 mm		DI Turbine	DI Tip Cap
Low density* Spinning max Thick Wall rotor – Max. 18 kHz	Thick Wall = 122 μ l, with Spacers = 60 μ l Thin Wall = 158 μ l, with Spacers = 77 μ l		-

Please note: Although the front turbine and rear tip cap are sold separately, a pair consisting of a front turbine and a rear tip cap are needed for spinning.


DI4 #	Price	Description		Maximum SpinSpeed*	
		Thick Wall Rotors and Caps		4 mm	
45127	\$712	DI 4mm Thick Wall Rotor – Silicon Nitride	DI 4mm Thick Wall Rotor – Silicon Nitride		
45127-P	790	DI 4mm Thick Wall Rotor – Silicon Nitride - Paintee	*	18 kHz	
				-	
45129	\$82	${ m DI}$ 4mm Front Turbine Cap for Thick Wall – GFT (g	lass filled torlon)	18 kHz	
46136	82	DI 4mm Rear Tip Cap for Thick Wall – GFT (glass f	18 kHz		
46142	82	DI 4mm Front Turbine Cap for Thick Wall – Torlon	18 kHz		
46140	82	DI4mm Rear Tip Cap for Thick Wall – Torlon		18 kHz	
46142-A	82	DI 4mm Front Turbine Cap for Thick Wall – Aurum		15 kHz	
46140-A	82	$DI4mm$ Rear Tip Cap for Thick Wall – \mbox{Aurum}		15 kHz	
45130	82	DI 4mm Front Turbine Cap for Thick Wall – Kel-F		9 kHz	
46137	82	DI 4mm Rear Tip Cap for Thick Wall – Kel-F		9 kHz	
45137	30	DI 4mm Spacer for Thick Wall Rotors – Teflon	De striste (s subsus		
46206	30	D 4mm Spacer for Thick Wall Rotors – Kel-F	Restricts/centers the sample to within the coil region). <i>Two are required.</i>		
46401	30	D 4mm Spacer for Thick Wall Rotors – PPS			

* Painted rotors are for probes with optical detection

Accessories For 4 mm DI (Drop-in) Spinners

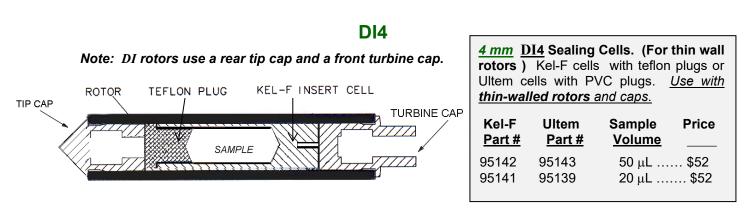

DI4 #	Price	DI4 Thin Wall Rotors and Cap	os	Maximum Spin Speed		
03136	\$712	DI 4mm Thin Wall Rotor – Silicon Nitride		12 kHz		
03136-P	790	DI 4mm Thin Wall Rotor – Silicon Nitride - Pair Painted rotors are for probes with optical detect		12 kHz		
45128	648	DI 4mm Thin Wall Rotor – Zirconia (Use Only With Probe with Optical detection)		10 kHz		
45131	82	${ m DI}$ 4mm Front Turbine Cap for Thin Wall – ${\it GFT}$ (gla	ass filled torlon)	12 kHz		
46138	82	${ m DI}$ 4mm Rear Tip Cap for Thin Wall – ${\it GFT}$ (glass fi	lled torlon)	12 kHz		
46141	82	DI 4mm Front Turbine Cap for Thin Wall – Torlon	ו 12 kHz			
46169	82	DI4mm Rear Tip Cap for Thin Wall – Torlon		12 kHz		
46141-A	82	DI 4mm Front Turbine Cap for Thin Wall – Aurum	l	12 kHz		
46169-A	82	$DI4mm$ Rear Tip Cap for Thin Wall – ${\rm Aurum}$		12 kHz		
45132	82	DI4mm Front Turbine Cap for Thin Wall – Kel-F		9 kHz		
46139	82	DI4mm Rear Tip Cap for Thin Wall – Kel-F		9 kHz		
45138	30	DI 4mm Spacer for Thin Wall Rotors – Teflon	Destricted			
46207	30	DI 4mm Spacer for Thin Wall Rotors – Kel-F	coil region). Two	the sample to within the are required		
46402	30	DI 4mm Spacer for Thin Wall Rotors – PPS	con rogion). Two	are required.		
DI4 #	Price	Cap Pullers and Accessories				
01003 or 06027	\$82	DI4 Turbine or Spacer Insertion and Removal Tool (Used for both turbine caps and spacers - since 10/2012)				
96188	130	Rotor Holder and Plungers – tools for tip cap and re	ear spacer removal			
99683	190	Sample Packing Set For Thick Wall DI 4 Rotors				
99682	190	Sample Packing Set For Thin Wall DI 4 Rotors				

DI-4 Sealing Cells for Liquids and Semi-Solids

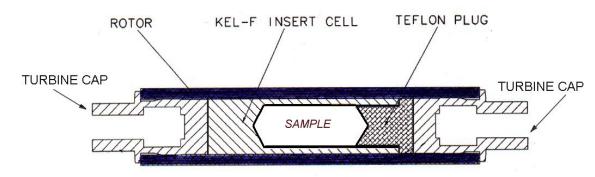
Sealing cells are for use inside DI thin-walled ceramic rotors. The plastic cells are available in Kel-F with teflon plugs for proton NMR, or in ultem with polyvinyl-chloride (PVC) plugs for fluorine NMR.

All cells are suitable for long-term sample storage without loss. They may be used with all common solvents, including acetone, alcohols, benzene, DMSO, ethers, methylene chloride, strong bases, and most strong acids – as long as the sample density does not exceed the density of the plug (2.2 g/cm³ for teflon, 1.4 g/cm³ for PVC).

(US\$ –Foreign prices higher, plus taxes).)



Sealing Cells for Liquids and Semi-Solids For XC and DI Spinners


All sealing cells are for use inside XC and DI thin-walled ceramic rotors. The plastic cells are available in Kel-F with teflon plugs for proton NMR or in ultern with polyvinyl-chloride (PVC) plugs for fluorine NMR.

All cells are suitable for long-term sample storage without loss. They may be used with all common solvents. including acetone, alcohols, benzene, DMSO, ethers, methylene chloride, strong bases, and most strong acids - as long as the sample density does not exceed the density of the plug (2.2 g/cm³ for teflon, 1.4 g/cm³ for PVC).

For material specifications: http://dotynmr.com/download/Materials-and-Speeds-Data.pdf

XC4 and XC5

Kel-F cell	s with t	eflon plug	s or Ultem	n wall rotors) cells with PVC short XC caps.	K	el-F cells v	with teflon	plugs or Ul	thin wall roto tem cells with rs and short >	PVC
	Kel-F <u>Part #</u>	Ultem <u>Part #</u>	Sample <u>Volume</u>	Price			Kel-F <u>Part #</u>	Ultem <u>Part #</u>	Sample <u>Volume</u>	Price
XC4 XC4		99691 99689		\$52 52		XC5 XC5	99801 99799	99793 99792	75 μL 50 μL	-

Note: XC rotors use a front turbine cap and rear turbine cap.

Rotors for XC and SuperSonic (SS) MAS Spinners

XC Rotors

<u>4 mm XC4 <i>Length</i> =20.95 mm</u> Sample – 66 μL to 124 μL Low density* Spinning maximum kHz					
# 43255	Silicon Nitride XC Thick Wall Rotor	22	\$654		
# 43483	Zirconia XC Thin Wall Rotor	11	654		

<u>5 mm XC5 Length =22,25 mm</u>					
Sample – 82 μL to 201 μL					
Low density* Spinning maximum kHz					
# 13265	Silicon Nitride XC Thick Wall Rotor	18	\$654		
# 13267	Silicon Nitride XC Thin Wall Rotor	16	660		
# 13268	Zirconia XC Thin Wall Rotor	9	654		

	<u>7 mm XC7 Length =29.00 mm</u>					
	Sample – 241 μL to 564 μL					
Lo	Low density* Spinning maximum kHz					
# 43526	Silicon Nitride XC Thick Wall Rotor	12	\$654			
# 43528	Zirconia XC Thick Wall Rotor	8	495			
# 43527	Silicon Nitride XC Thin Wall Rotor	11	715			
# 43529	Zirconia XC Thin Wall Rotor	7	550			

<u>10 mm XC10 Length =35.00 mm</u> Sample volume – .6 mL to 1.10 mL Low density* Spinning maximum | kHz |

# 44266 Ziroopio XC Thip Well Poter	4265	Zirconia XC Thick Wall Rotor	8.5	\$875
# 44266 Ziroopio XC Thin Wall Poter				
	4266	Zirconia XC Thin Wall Rotor	4.5	918

SuperSonic Rotors

<u>5 mm SuperSonic (SS) Length =14.93 mm</u>				
Sample volume – 56 μL to 110 μL				
Low density* Spinning maximum kHz				
# 13251	Silicon Nitride SS Thick Wall Rotor	18	\$654	
# 42388	Silicon Nitride SS Thin Wall Rotor	16	660	
# 42396	Zirconia SS Thin Wall Rotor	9	654	

<u>7 mm SuperSonic (SS) Length =22.10 mm</u>				
Sample volume – 215 μL to 360 μL				
Low density* Spinning maximum kHz				
# 13857	Silicon Nitride SS Thick Wall Rotor	12	\$605	
# 13858	Zirconia SS Thick Wall Rotor	8	495	
# 13859	Silicon Nitride SS Thin Wall Rotor	11	715	
# 13861	Zirconia SS Thin Wall Rotor	7	550	

10 mm SuperSonic (SS) Length =27.50 mm				
Sample volume – .6 mL to 1.10 mL				
Low density* Spinning maximum kHz				
# 42113	Silicon Nitride SS Thick Wall Rotor	8.5	\$ 864	
# 42138	Zirconia SS Thick Wall Rotor	6	864	
# 42193	Silicon Nitride SS Thin Wall Rotor	8	918	
# 42173	Zirconia SS Thin Wall Rotor	4.5	918	

> For material specifications: <u>http://dotynmr.com/download/Materials-and-Speeds-Data.pdf</u>

- Thick wall rotors and GFT or Torlon caps are provided for fastest spinning and ease in packing. Thin wall rotors and caps are available for maximum signal to noise. The maximum speed of thin wall rotors is about 50% the speed of thick wall rotors. Long caps are provided for highest homogeneity and rf field strength.
- For XC probes, (beginning in 2000) XC "Slow MAS" is provided for stable very slow spinning of tissues, liquids, and CC by a change in "nozzle caps" only. The same turbine caps are used. All choices of XC rotors and caps may be used with slow spin nozzle caps. A 50% reduction in maximum spinning speeds should be expected for each type. See page 4 for more specifications.

XC, SuperSonic, DI, High Speed, and Standard accessories are <u>not</u> interchangeable <u>unless specified</u>. <u>If unsure about</u> <u>correct supplies, contact us with the probe DSI-serial number and we can help.</u>

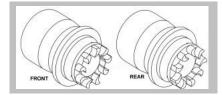
Accessories for XC

SuperSonic (SS) and XC rotors and caps are different. Check the rotor length to be sure you order the correct parts.

FRONT

For material specifications: <u>http://dotynmr.com/download/Materials-and-Speeds-Data.pdf</u>

XC4	XC5	XC7	lf anno ann a ba chuith a matair lain		41
4 mm Rotor Length = 20.95	5 mm Rotor Length = 22.25	7 mm Rotor Length = 29.00	If unsure, check the rotor len to confirm that אסנ		the left
Part #	Part #	Part #	Description		Price
	C	aps for THICK V	Vall Rotors – fastest spinning		
99705	96432	96462	XC Kel-F Short Thick Cap Pair		\$184
99702	99844	99637	XC Kel-F Long Thick Cap Pair		184
99684	99822	99816	XC GFT Short Thick Cap Pair, GFT	(glass filled torlon)	210
99685	99821		XC GFT Long Thick Cap Pair, GFT	(glass filled torlon)	210
96431	96457	96466	XC Torlon (or Aurum *) Short Thick	Cap Pair	210
96433	99839		XC Torlon (or Aurum *) Long Thick	Cap Pair	210
		96468	XC/SS Kel-F O-Ring Cap Pair	·	298
		96469	XC/SS Aurum O-Ring Cap Pair		298
		Caps fo	or THIN Wall Rotors		
99699	96434	96464	XC Kel-F Short Thin Cap Pair		\$184
99697	99835	99635	XC Kel-F Long Thin Cap Pair		184
99686	99824	99817	XC GFT Short Thin Cap Pair, GFT (glass filled torlon)		210
99687	99823		XC GFT Long Thin Cap Pair, GFT	(glass filled torlon)	210
99722	99834	96465	XC Torlon (or Aurum *) Short Thin	Cap Pair	210
99723	99833	99636	XC Torlon (or Aurum *) Long Thin	Cap Pair	210
		Cap Pull	ers and Accessories		
96182	96182	96360	Puller for Turbine Caps		\$248
		96170	Threaded Cap Puller for O-ring C	aps	130
01026	06019	06023	Rotor Holder – use with plungers	below	52
01028	06021	43761	Plunger - thick wall- to push out ca	ps or sealing cells	42
01029	06022	42039	Plunger - thin wall- to push out cap	s or sealing cells	42
99683	96511	96113	XC Sample Packing Set for Thick	Wall Rotors	\$190
99682	96513	96114	XC Sample Packing Set for Thin	Wall Rotors	190
		MAS Turbine	Cap Spinning Speeds		
	Maximum	Spinning Speed	s (kHz) For Caps at Room Tempe	erature	
Cap Styl	e	4 mm XC	5-mm XC	7-mm XC	
Kel-F		11	10	7	
Caps with o-	rings			7	
Aurum		22	18	12	
Torlon or GF	T	22	18	12	


* Torlon has very similar NMR properties and will be substituted if Aurum is not available.

(US\$ – Foreign prices higher, plus taxes)

Accessories Supersonic (SS)

SuperSonic (SS) and XC rotors and caps are different. Check the rotor length to be sure you order the correct parts.

For material specifications: http://dotynmr.com/download/Materials-and-Speeds-Data.pdf

SS 5 mm	SS 7 mm	If unsure, check the rotor length (mm) listed on the						
5 mm Rotor Length = 14.93 mm	7 mm Rotor Length = 22.10 mm							
Part #	Part #	Description						
Caps for THICK Wall Rotors – fastest spinning								
96432-SS	96462	SS Kel-F Short Thick Cap Pair	\$184					
99822-SS	99816	SS GFT Short Thick Cap Pair, GFT (glass filled torlon)	210					
96457-SS	96466	SS Torlon (or Aurum*) Short Thick Cap Pair	210					
	96468	SS Kel-F O-Ring Cap Pair	298					
	96469	SS Aurum O-Ring Cap Pair	298					
		Caps for THIN Wall Rotors						
96434-SS	96464	SS Kel-F Short Thin Cap Pair	\$184					
99824-SS	99817	SS GFT Short Thin Cap Pair, GFT (glass filled torlon)	210					
99834-SS	96465	SS Torlon (or Aurum*) Short Thin Cap Pair	210					
96472-SS	90613	SS Torlon Long Thin Cap Pair	210					
		Cap Pullers and Accessories						
96182	96360	Puller for Turbine Caps	\$248					
	96170	Threaded Cap Puller for O-ring Caps	130					
06019	06023	Rotor Holder – use with plungers below	52					
06021	43761	Plunger - thick wall- to push out caps or sealing cells	42					
06022	42039	Plunger - thin wall- to push out caps or sealing cells						
96059	96510	SS Sample Packing Set for Thick Wall Rotors	190					
96515	96517	SS Sample Packing Set for Thin Wall Rotors	190					

Maximum Chinning Choods (KUT) For Cons at Doom Tomporature

Maximum Spinning Speeds (KHZ) For Caps at Room Temperature								
Cap Style	5-mm SuperSonic	7-mm SuperSonic						
Kel-F	10	7						
Caps with o-rings 7								
Aurum	18	12						
Torlon or GFT 18 12								
This chart represents <u>only</u> material characteristics for caps. Check the Probe and Rotor Specifications.								

* Torlon has very similar NMR properties and will be substituted if Aurum is not available.

(US\$ – Foreign prices higher, plus taxes.)

5 mm High Speed

Rotor length= 14.93 mm

Accessories for 5 mm and 7 mm High-Speed MAS

For material specifications: <u>http://dotynmr.com/download/Materials-and-Speeds-Data.pdf</u>

Thick wall rotors are provided for fastest spinning and ease in packing. Thin wall rotors and short caps provide maximum signal to noise. Long caps are provided for highest homogeneity and rf field strength or for limited samples.

High Speed, SuperSonic, XC, DI, and Standard accessories are <u>not</u> interchangeable unless specified. <u>If unsure about correct supplies, contact us with the probe DSI-serial number and we can help.</u> Note: SuperSonic rotors may be used in High Speed spinners, but High Speed rotors will not work in SuperSonic spinners.

Turbine Cap Design

Spinnin	g speed i	nax. 14 kHz, Spinning s	peed max	. 9 kHz,			
Sample	volume -	- 57 μL to 95 μL FRONT CAP REAR CAP Sample volume –	240 μL to	370 μL			
Part #	Price	Description	Part #	Price			
	-	Thick Wall Rotors	-				
13260	\$ 605	Silicon Nitride Rotor	13860	\$ 605			
13280	275	Macor Rotor	13880	275			
	-	End Caps for Thick Wall Zirconia and Silicon Nitride Rotors	-				
97780	\$120	Kel-F Short Cap Pair	97830	\$120			
97810	120	Kel-F Long Cap Pair	97860	120			
97790	132	Aurum (or Torlon*) Short Cap Pair	97840	132			
97820	132	Aurum Long Cap Pair	97870	132			
96446	230	Kel-F O-Ring Cap Pair**	96447	230			
96900	230	Aurum O-Ring Cap Pair**	96448	230			
		End Caps for <u>Macor</u> Rotors					
13291	\$116	Kel-F O-Ring Rear Turbine for Macor Rotor**	13531	\$116			
13680	116	Aurum O-Ring Rear Turbine for Macor Rotor** 13533 11					
	-	Thin Wall Rotors	-				
42384	\$715	Silicon Nitride Rotor	13856	\$715			
42238	605	Zirconia Rotor	42237	605			
		End Caps for Thin Wall Zirconia and Silicon Nitride Rotors					
96485	\$120	Kel-F Short Cap Pair	96481	\$120			
96486	120	Kel-F Long Cap Pair	96482	120			
96487	132	Aurum Short Cap Pair	96483	132			
96488	132	Aurum Long Cap Pair	96484	132			
	-	Cap Pullers and Accessories	-				
94810	\$253	Kel-F Front Housing Cap	94790	\$253			
94820	341	Kel-F Back Housing Cap	94800	341			
7130	33	Kel-F Housing Thumb Screws (priced per pair)	7130	33			
96360	192	Puller for Long and Short Kel-F, Vespel, Torlon or Aurum Caps	96310	192			
96190	120	(5 mm) Black Threaded End-Cap Puller for O-ring Caps (4-48 Thread)					
		(7 mm) Gray Threaded End-Cap Puller for O-ring Caps (6-40 Thread)	96180	120			
96530	176	Sample Packing Tool Set for Thick Wall	96540	176			
96514	176	Sample Packing Tool Set for Thin Wall	96516	176			

* Torlon has very similar NMR properties and may be substituted if Aurum is not available.

** **Specify on the order.** – One can insert o-ring turbines by twisting them in by hand. Or, O-ring turbine caps can be ordered with threaded holes for insertion and removal with a threaded cap puller. Front turbine caps can also be ordered with an axial out-gassing hole for high temp work or to remove air bubbles. *O-ring caps can be used for liquids, for sealing, or for VT.*

(US\$ – Foreign prices higher, plus taxes.)

7 mm High Speed

Rotor length= 22.10 mm

Accessories For 5 mm and 7 mm Standard MAS

Short caps are provided for maximum signal to noise. Long caps are provided for highest homogeneity and rf field strength. Long caps are also for limited samples.

For material specifications: http://dotynmr.com/download/Materials-and-Speeds-Data.pdf

Standard, High Speed, SuperSonic, XC, and DI and accessories are <u>not</u> interchangeable. If unsure about correct supplies, contact us with the probe DSI-serial number and we can help.

<u>5 mm Standard</u>

Rotor length=13.08 mm

Turbine Cap Design

Spinning speed max. 9 kHz,

Rotor length=18.31 mm Spinning speed max. 6 kHz, Sample volume – 200 μL to 350 μL

Sample volume - 60 µL to 110 µL

Part #	Price	Description	Part #	Price
		Rotors		
5511	\$660	Silicon Nitride Rotor	7511	\$660
5520	362	Zirconia Rotor	7520	362
5900	275	Macor Rotor	7900	275
		End Caps for Zirconia and Silicon Nitride Rotors		
97650	\$88	Kel-F Short Cap Pair	97500	\$88
97660	88	Kel-F Long Cap Pair	97510	88
96518	55	Kel-F Spherical Sample Cell Insert Pair for CRAMPS Experiments (Use with long Kel-F caps)		
97680	100	Aurum Short Cap Pair	97530	100
97690	100	Aurum Long Cap Pair	97540	100
96443	170	Kel-F O-Ring Cap Pair*	96435	170
97940	170	Aurum O-Ring Cap Pair*	96445	170
		End Caps for Macor Rotors		
5980	\$50	Kel-F Plug Cap for Macor Rotor		
5990	50	Teflon Plug Cap for Macor Rotor		
5572	116	Kel-F O-Ring Plug Cap for Macor Rotor*	7541	\$116
5573	116	Aurum O-Ring Plug Cap for Macor Rotor*	7542	116
		Cap Pullers and Accessories	•	
5170	\$170	Kel-F Front Housing Cap	7170	\$170
7130	33	Kel-F Housing Thumb Screws (priced per pair)	7130	33
96220	192	Puller for Long and Short Kel-F, Vespel, Torlon or Aurum Caps	96240	192
96170	120	5 mm Blue Threaded End Cap Puller for 5 mm O-ring Caps (24 mm Thread)		
		7 mm Red Threaded End-Cap Puller for 7 mm O-ring Caps, (5-44 Thread)	96250	120
		For 7 mm Macor caps for Macor rotors - Black Threaded Cap Puller (4-48 Thread)	96190	120
96500	176	Sample Packing Tool Set for Silicon Nitride and Zirconia Rotors	96520	176
4710	55	Packing Tamp for Caps with Axial Screws	4700	55

* <u>Specify on the order</u>. – Some prefer to insert o-ring turbines by twisting them in by hand. However, o-ring turbine caps can be ordered <u>with threaded holes</u> to be inserted and removed with the threaded cap puller. (Plug caps must be removed with the threaded tool.) Front turbine caps can also be ordered <u>with an axial out-gassing hole</u> for higher temperature work or to remove air bubbles. *O-ring caps can be used for liquids, for sealing, or for some VT.*

Doty Spinner Assembly Materials

Doty spinners utilize super-precision, wear-resistant ceramic stators of silicon nitride or zirconia. MAS spinner materials must be chosen carefully based on background signals and temperature ranges. Ceramic rotors and plastic caps of various materials are available to provide fast spinning with limited background problems.

		Material Specifi	cations	Turbine Cap Specifications			
Material	Upper Temp	Major Constituents	Minor Elements	Recommended Use	Cap VT Operation Range		
Silicon Nitride	1400°C *	98% Si₃N₄	2% Y ₂ O ₃ , .005 Al				
Zirconia	650°C *	94 ZrO ₂ , 4 Y ₂ O ₃	Hf, 0.3% Si, .02 Al				
Macor	650°C *	Al, Si, O, B, K	2% F, Mg				
Kel-F	130°C *	F, C, Cl		proton & carbon studies	-20°C to 70°C.		
GF Torlon (30% Glass)	260°C*	H, C, O, Si	Ti, N, F	fast spinning, wide temperature range, wear resistant	-120°C to 160°C (glued in with epoxy -170°C to 250°C)		
Glass Fibers in GFT		SiO ₂	CaO, MgO, Al ₂ O _{3,} B ₂ O ₃ ,				
Torlon	260°C*	Н, С, О	Ti, N	fast spinning and Iow ²⁹ Si or Iow ¹⁹ F	-30°C to 80°C		
Aurum	240°C *	Н, С, О	Ν	fast spinning and Iow ²⁹ Si or Iow ¹⁹ F	-30°C to 80°C		
Vespel	300°C *	Н, С, О	Ν	special extended VT caps	-270°C to 240°C		

* Note: This chart represents <u>only</u> material characteristics. Check the Probe Specifications. Non-spinning parts can tolerate different temperatures than turbine caps spinning on rotors.

Spinner Assembly Materials – Plastics

GFT (Glass-fiber-reinforced Torlon): Glass-fiber-reinforced Torlon grade 5030 will be used for some MAS turbine caps for greatly improved VT performance and all-around better reliability and performance. This new material stands out from the rest with respect to isotropic thermal expansion (only 16E-6/°C), tensile strength at 200°C (120 MPa), and heat distortion temperature (282°C). It also has rather low moisture absorption, high wear resistance, and high impact strength. These caps are the most wear resistant and have the widest temperature range. GFT is not recommended for proton studies, or for some silicon and some carbon studies. Caps may be used from -120°C to 160°C repeatedly (or when glued in with epoxy from -170°C to 250°C).

Torion: Torion is used for fastest spinning of DI3 turbines. This green thermoplastic polyamide-imide, has exceptional chemical resistance. Caps may be used from -30°C to 80°C repeatedly. *The caps may be used once to higher temperatures but they will be too loose after that.* (In non-spinning parts of the spinner assembly, the upper temperature limit is 260°C.) Torion is not recommended for proton studies or for some carbon studies. As Torion has a relatively high moisture absorption rate .03%/24hours, it may be periodically necessary to bake out the turbine caps or tip caps at 50°C for one hour. This is necessary if the caps become too tight. (The opposite condition is much less likely. However, if one is in a very arid area or operating in a low moisture environment, the caps may have to be soaked in a liquid too make them tighter.)

Kel-F: A translucent white plastic, Kel-F is background free for all nuclei except F, Cl, and C. Kel-F is also excellent for carbon studies since the strong fluorine coupling effectively broadens the Kel-F carbon signal, and there are no protons to cross polarize. Kel-F is not as strong or wear resistant as the other cap materials and is thus restricted to lower spinning speeds. Kel-F turbine caps can be used at temperatures from -20°C to 70°C. (In non-spinning parts of the spinner assembly, the upper temperature limit is 130°C.)

Aurum*: This material is no longer available in appropriate form for our manufacturing, so Aurum is being replaced by Torlon. Aurum will be supplied if requested and is available, but supplies are severly limited.

This dark brown to black thermoplastic polyimide has excellent dielectric properties. Aurum can be used for low silicon applications when fast spinning is desired. Aurum is supplied for some probes designed for fluorine studies and other applications where carbon is not a problem. Turbine caps may be used from -30°C to 80°C repeatedly. (In non-spinning parts of the spinner assembly, the upper temperature limit is 240°C.)

Vespel: This brown plastic is used for some extended temperature caps and for non-spinning spinner assembly parts that will reach temperatures over 200°C. Vespel is not recommended for proton studies or for some carbon studies.

O-Ring Caps

For wet samples, air sensitive samples, and variable temperatures

O-ring Caps: Turbines and plug caps with dual Viton o-ring seals are available for Macor, silicon nitride, and zirconia rotors. Macor rotors, (available only for standard and high speed probes) are recommended for wet samples, air sensitive samples, and temperatures from -60°C to 250°C. A single (rear) cap with o-rings is used with a Macor rotor. However, if faster spinning is critical, VT and air-sensitive experiments can be done in silicon nitride or zirconia rotors using o-ring-sealed cap pairs. O-ring turbine caps are normally inserted and removed by hand. Turbines with threaded holes can be ordered with a threaded insertion tool for use when loading samples in a glove box (and to remove standard speed plug caps.) Caps can be ordered with axial outgassing holes for higher temperature work or to remove air bubbles.

Although the supersonic o-ring caps can be used for air sensitive samples in XC5 and XC7 probes, XC sealing cells are usually preferred.

- Kel-F O-ring Caps: Temperature range with o-rings: -45°C to 80°C.
- Aurum or Torlon O-ring Caps: Temperature range with o-rings: -45°C to 120°C.

Extended Temperature Caps

• DI, XC4 and XC5 probes (and most supersonic) use Glass-fiber-reinforced Torlon (GFT) – glued in.

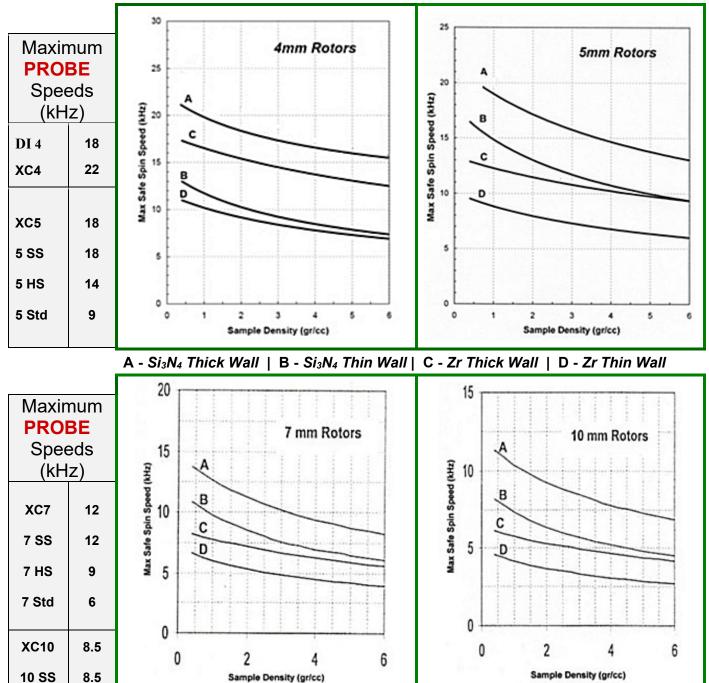
GFT – if glued in: Temperature range: -170°C to 250°C

* Torlon is replacing aurum for most parts, depending on availability. Torlon can be used as a substitute for aurum as the NMR characteristics are similar.

Spinner Assembly Materials – Ceramics

Silicon Nitride: With a density of about 3.18 g/cm³ and a (working) tensile strength of 700 MPa, silicon nitride has the highest strength-to-weight ratio of any ceramic available today. Its hardness and toughness make it very difficult to grind, but it has the lowest dielectric loss and lowest permittivity of any engineering ceramic, making it the best choice for high frequencies. A HIPed (Hot Isostatic Pressed) variety is available with improved strength and dielectric properties. Its superior electrical properties make it the preferred material for most applications (often, even for silicon and nitrogen), because of silicon's long T_1 and nitrogen's low natural abundance. The color is black. The only additive or impurity greater than 200 ppm in this new material is yttria. Silicon nitride stators, housings, and rotors are available in all sizes. This material is required for fastest spinning.

Zirconia: This yttria-stabilized, high-purity material is glossy white and has a density of about 6 g/cm³ and a (working) tensile strength of 700 MPa. Alumina content can be kept below 100 ppm. Zirconia is less expensive than silicon nitride, but the safe spinning speed for zirconia rotors is lower than that of silicon nitride.


Macor: This white, machineable, boro-silicate glass-ceramic is loaded with synthetic mica to inhibit crack propagation. It is easily machined with conventional tooling. Macor housings may be provided for carbon and proton studies at temperatures over 160°C in our standard speed MAS probes. Macor is useable up to 650°C, but it has very poor thermal shock tolerance. Macor rotors are only available for the high speed and standard spinners. Macor rotors are made with a thicker wall and are machined with an integral turbine at one end. Standard speed rotors require a plug-cap at the open end, while high-speed rotors require a rear turbine. Macor rotors are recommended for wet samples, air-sensitive samples, and temperatures from -150°C to 250°C. Major constituents: AI, Si, O, B, K, F.

Boron Nitride: Boron Nitride is not used in Doty probes. However, the hexagonal hot-pressed variety, with 6% calcium borate binder, is easily machineable and is used for disposable inserts for the high-temperature ceramic rotors for the Doty high temperature probe (700°C). The material is soft enough to scratch easily and may absorb up to 1% moisture.

Doty MAS Spinning Speeds

See 3 mm next page.

	MAS Turbine Cap Spinning Speeds								
	Maximum Spinning Speeds (kHz) For Caps at Room Temperature								
Cap Style	4 mm	5-mm XC or Su- perSonic	5-mm Stand- ard & High-Speed	7-mm XC or SuperSonic	7-mm Standard & High-Speed	10-mm XC, SuperSonic			
Kel-F	11	10	9	7	6	5			
Torlon or GFT	22	18	14	12	9	8.5			
Vespel	21	16	14	12	9	8			
Aurum	22	18	14	12	9	8.5			
Caps with o-rings		10	9	7	6	5			
Vespel w/screw			9	12	11	8			

Note: This chart represents <u>only</u> material characteristics for caps. Check the <u>Probe</u> Specifications. The spinning speed is often more limited by the probe or the rotor material.

3 mm Maximum MAS Spinning Speeds

Use the lower of the speeds listed: considering the rotor, the cap, the temperature and the density maximum speeds

Rotors: The maximum speed must be reduced as the density of the sample increases.										
DI3 Silicon Nitride Rotors	26 KHz	For sample density = 1								
Maximum Speed	24 KHz	For sample density = 3								
Maximum Spinning Speeds (kHz) For Caps at Room Temperature										
Cap Style	Cap Material Temperature Range									
Torlon Front Turbine Cap	26 KHz	-30° to 80 °C								
Torlon Rear Tip Cap	26 KHz	-50 10 80 C								
GFT* Front Turbine Cap	26 KHz	-120° to 160 °C								
GFT* Rear Tip Cap	26 KHz									
Kel-F Front Turbine Cap	11 KHz									
Kel-F Rear Tip Cap	11 KHz	-20° to 70 °C								
* <i>Maximum Spinning Speeds (KHz) For Caps at Extended Temperatures</i> Spinning speeds must be reduced for higher or lower temperatures.										
	· ·	1								
	· ·	1								

* Note: **GFT caps** can be used up to 250 °C or down to -170 °C if they are glued in with epoxy. However the probe must be rated for these extended temperatures.

Typical Specifications for Solids Probes

CRAMPS, Wide Line, MQ/MAS, H/F/X or F/X MAS,

Double-tuned, or Triple-tuned Probes

Although the versatile XC MAS probe can be supplied with one to four channels and upgraded at a later date, many customers prefer to order dedicated-purpose probes for lower cost or for specific requirements. Doty provides dedicated **CRAMPS**, **WIDELINE**, **Double-tuned**, **Triple-tuned**, **MQ/MAS**, and **HFX MAS**, to name a few. The following table provides typical specifications for some of these probes for the NB 500 MHz spectrometer. Specifications for other probes are available upon request.

500 MHz NB Solids. Standard Resolution. (For 40 mm RT shim bore, 5 mm sample.)												
Brief Description	VT range °C	Spinner, kHz	H/F γB₁ kHz	H/F P W	H/F dec. ms	Salt Toler.	¹³ C π/2 μs	¹³ C Power W	S/N, 4t	Widelin ¹ H	e Backg ¹⁹ F	rounds ¹³ C
¹ H CRAMPS	-80/+120	Std, 1-9	160	400	-	High	-	-	-	~Zero	High	-
X WL	-80/+120	0	-	-	-	High	2.0	450	-	Mod.	High	Low
² H WL	-80/+120	0	-	-	-	High	2.0 ² H 90	975	-	Mod.	High	Low
H/X WL	-80/+120	0	120	300	150	High	2.6	700	240 ^A	Mod.	High	Low

500 MHz NB HR MAS Solids. XC Fast Spinner. (For 40 mm RT shim bore, 5 mm sample.)

		•						. ,				
Brief Description	VT range °C	Spinner, kHz	H/F γB₁ kHz	H/F P W	H/F dec. ms	Salt Toler.	¹³ C π/2 μs	¹³ C Power W	S/N, 4t	Wideline ¹ H	e Backg ¹⁹ F	rounds ¹³ C
H/X MAS*	-80/+120	XC 2 -18	65	190	50	Mod.	4.6	200	390 ^A	Mod.	High	Low
H/X MAS*	-160/+150	XC 2 -18	65	190	50	Mod.	4.6	200	390 ^A	Mod.	High	Low
H/X MAS	-80/+120	XC 2 -18	120	300	100	High	3.6	400	190 ^B	Mod.	High	Low
H/X MAS	-160/+150	XC 2 -18	120	300	100	High	3.6	400	190 ^B	Mod.	High	Low
F/X MAS	-160/+150	XC 2 -18	120	330	100	High	3.6	400	180 ^B	M. High	None	M. Low
H/X MAS/PFG	-15/+60	XC 2 -18	55	200	50	Mod.	4.6	225	390 ^A	Mod.	High	Low
H/X/Y MAS	-15/+60	XC 2 -18	120	300	100	High	3.6	400	180 ^B	Mod.	High	Low
H/X/Y MAS	-160/+150	XC 2 -18	120	300	100	High	3.6	400	180 ^B	Mod.	High	Low
H/F/X MAS	-80/+120	XC 2 -18	80/80	420	100/80	High	4.6	450	170 ^B	High	None	Mod.
H/F/X MAS	-160/+150	XC 2 -18	80/80	420	100/80	High	4.6	450	170 ^B	High	None	Mod.
H/F/X MAS	-160/+150	XC 2 -18	80/80	420	100/80	High	4.6	450	170 ^B	Mod.	High	Low
H/F/X MAS	-80/+120	XC 2 -18	80/80	420	100/80	High	4.6	450	170 ^B	Mod.	High	Low

All the above data are for 5 mm. S/N at RT; NF=1.2. **A:** non-spinning CP at 90° on HMB. **B:** CPMAS on glycine. Specifications listed for Triple Resonance probes are for DT configuration. For "High salt" probes, maximum X-channel B₁ is degraded during CP by ~20%, but ~40% for "Moderate salt" probes. Also available with SuperSonic Spinner. Specifications subject to change.

Ordering Information

Probes Are Available for All Spectrometer Users

+ Bruker + JEOL + Tecmag + Agilent/ Varian/ Chemagnetics

• Siemans • GE • Custom

Pricing

- There is a \$50 minimum per order.
- For probe prices, please request a quotation. This enables us to confirm prices and specifications.
- Shipping and handling charges will be prepaid and added to the invoice.
- Pricing is for U.S. domestic sales and subject to change without notice. Add 5% plus customs duties for Canada. Add 15% plus customs duties for foreign sales.

Volume Discounts For Rotors, Caps and Other Small Items									
Price Per Item	Price Per Item Quantity Per Line Item								
under \$ 100	4-9	10%							
under \$ 100	10 or more	20%							
\$100 - \$400	4-9	10%							
\$100 - \$ 400	10 or more	15%							
\$401 - \$1000	4-9	5%							
\$401 - \$1000	10 or more	10%							

Doty Scientific Warranty Information

DSI warrants that its products will conform to the specifications quoted when used with reasonable care within specifications, and in conjunction with properly performing instruments, for a period of one year from the date shipped. Exceptions: (1) Rotors and turbine caps are not covered under warranty because rotors and caps may be damaged by IMPROPER handling. Please follow the instructions in your manual. (2) Probe VT components may not be covered under warranty unless the probe is used with a DSI VT controller. Products requiring service or modification may be returned with freight, insurance, and handling fees prepaid. DSI will return repaired products freight prepaid. DSI assumes no responsibility for the repair or modification of products not provided by Doty Scientific.

MasterCard and Visa Are Accepted

E-mail: contact@rs2d.com

Website: www.rs2d.com

Sales Offices

For Sales and Service in the USA: DOTY SCIENTIFIC, INC. 700 Clemson RoadColumbia, SC 29229 USA **Phone:** 1 (803) 788-6497 Fax: 1 (803) 736-5495 sales@dotynmr.com, service@dotynmr.com www.dotynmr.com For Sales and Service in Japan: For European Sales and Service: L.A.Systems, Inc. **ROTOTEC-SPINTEC GmbH** Takao Okada, Ph.D. President David H. Cross, President Tokei-Kaikan Bldg. 1F 1-11-5 Langweisenweg 53 Ueno. Taito-ku 75323 Bad Wildbad Tokyo,110-0005, GERMANY JAPAN Phone: +81-3-5812-5311 Phone: +49 (0) 7081 380 3851 Fax: +49 (0) 7081 380 3852 Fax: +81-3-5807-4050 **E-mail:** info@rototec-spintec.com Email: support@las.jp Website: www.rototec-spintec.com Website: www.las.jp For Sales and Service in Korea: For Sales in France and Belgium: BK Instruments Inc. RS2D Gee-Duk Jeon, President / CEO ZA des Marechaux - 13, Rue Vauban 4F, BKI Bldg., 281-25, Munji-Ro, 67450 MUNDOLSHEIM Yuseong-Gu, Daejeon, 34050, FRANCE SOUTH KOREA Phone: +33 (0)390405400 Phone: +82 (0) 42 487 8240 Fax: +33 (0)390405410

Email: gdjeon@bkinstruments.co.kr Website: www.bkinstruments.co.kr