A Novel Segmented Double-Tuned Quadrature High-field MR Coil With Exceptional Tuning Stability

F David Doty¹, Glenn N Doty¹, Scott Deese¹, JB Spitzmesser¹, Daniel Arcos¹, David L McCree¹, Laura L Holte¹, Paul D Ellis¹, Sylvie Clerjon², and Jean-Marie Bonny²

¹DOTY Scientific Inc. 700 Clemson Rd. Columbia SC 29229 ²INRA, QuaPA, AgroResonance, Saint-Genes-Champanelle, France

Introduction

DOTY SCIENTIFIC

There is urgent need for a more satisfactory highfield, large, double-tuned rf coil to better support hyperpolarized ¹³C MR with its enormous SNR enhancement, and also ²³Na MR, with its longer history of significant contributions to the biochemistry of various disease states and their progression. The novel coil presented here promises to be a significant step toward addressing that need. We present a novel High Frequency-segmented DT coil design showing an unprecedented degree of minimization of E fields, even with long samples, with little compromise in B_1 efficiency at either frequency and with greater potential for scalability to whole-body DT T/R circular-polarization coils at high fields.

Advanced DT Quadrature Coil for Highest fields

Novel segmented DT Volume Coil (VC):

- First-ever capacitively segmented DT volume coil which is essential for efficient operation of large coils at very high fields.
- Compatible with multi-nuclear LF tuning, for ¹H/³¹P through ¹H/¹³C

Other features:

• multilayer dielectric shielding;

Background

Current double-tuned quadrature designs:

Design pros/cons often plagued by nearby trap-based¹ parasitic modes and poor LF

- optimal tapering of Crozier-like rung geometry;
- balanced-low-pass at both frequencies.
- a blend of some (Vaughan) TEM and (Edelstein) BC field characteristics;
- Includes novel matching circuitry.

All contribute to its remarkably low HF E/B throughout long samples and hence the negligible tuning shifts with changes in the sample.

Simulations and Bench Measurements

Simulations performed using Genesys, CST, and **COMSOL** models were in remarkable agreement with experiments.

For a full saline sample (16 cm diameter, 17 cm long) of 1 S/m, mean $\pi/2$ pulse length throughout the sample at 900 W CP is seen to be under 0.8 ms for ²³Na at 52.9 MHz and ~0.6 ms for ¹H at 200 MHz. **Detailed CST simulations showed compatibility with** multi-nuclear H/X head coils up to 7 T.

Fig. 5 E-normal on the surface of the coil structure at 4.7 T, from CST simulations.

Fig. 6 4.7 T 1 H/ 23 Na volume coil. 20 cm ID x 20 cm RF rung length (25 cm OD).

20 cm ¹H/²³Na DT Quadrature coil, 4.7 T

efficiency.

major penalties on the LF; Alternating often exhibits lower ¹H rungs efficiency.

multi-ring demonstrated best structures² performance on the LF channel, but HF channel produces high E fields in sample regions axially well beyond the target FOV.

All are fundamentally incompatible with HF segmentation in the central region.

Fig. 4 The ²³Na B₁+ field in the 200 MHz 20 cm **8-section DT coil.**

Fig. 3 The ¹H B₁+ field in the 200 MHz 20 cm DT coil with an extra long saline sample

MR Data at 4.7 T from INRA, France, Dr. Sylvie Clerjon

¹H Salted Ham

Shown here are (first) ¹H and then ²³Na images of a transversal slice through a Norwegian traditional dry salted ham. This product is known to have a 9% average salt content in the finished product. As seen in the sodium image, structures salt distribution is nearly homogeneous, as it is near the end of the salt cure process.

¹Na Salted Ham

References 1. Shen GX, Wu JF, Boada FE, Thulborn KR. Magn. Reson. Med. 1999. **41**:268-275 2. Murphy-Boesch J, Srinivasan R, Carvajal L, and Brown TR. J. Magn. Reson. Series B. 1994; **103**, 103-114.

There is no salt in the fat parts (mainly upper and right, as seen from the rapid ¹H image acquired on the same slice). Sodium imaging protocol: Chemical Spectroscopy Imaging (CSI), TE/TR=1.6ms/200ms. Resolution is 2*2*5 mm. Total acquisition time is 1 hr 49 min.