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The Doty NMR S/N Applet – For Any Probe, Any Nuclide, Any Sample, … 
 

Allows you to easily and anonymously compare the S/N of your probe to Doty Probes 
 
 A lot of useful expressions have been derived and published for calculating the S/N of an NMR 
probe, but generally they are either very difficult to apply or of limited validity.  In our experience, the most 
generally valid expression predicting the S/N may also be the most difficult to use – until now.  The Doty 
S/N applet makes it easy to estimate the S/N that can be expected from any NMR probe for any conditions 
with minimal and easy-to-determine input information.  
 The Doty S/N applet basically just needs to know the rf power P required to achieve a /2 pulse 90 
of some known length for any nuclide in your probe at any polarizing field B0.  It then calculates the S/N of 
your probe for any sample, nuclide, temperature, linewidth, B0, etc. – for a single acquisition following a 900 
pulse at thermal equilibrium.  
 
 Comparing Your Probe to a Doty Probe.  To compare the S/N of your probe to a Doty probe, 
select the Doty probe of interest from the list for which data are shown, and appropriate default parameters 
will appear.  (Perhaps at some point in the future we’ll include data for some competitor’s probes.  Perhaps 
they’ll provide you the needed data so you can make the comparison.)  
 
 Calculating Expected S/N for Your Conditions.  One begins by entering B0, the nuclide, 90, P, 
sample volume VS, and pulse power P at which the probe design has been characterized.  It is not 
necessary to know this information for the B0, nuclide, sample, or temperature of interest if the probe circuit 
design is basically similar over a range of fields.  The applet knows how to scale the calibration information 
to different fields, nuclides, sample volumes, and temperatures, assuming the circuit design is similar for the 
different cases.  For example, this means if you have calibration data for an E-Free, T3, or Bmax probe at 
500 MHz, you can get excellent S/N predictions for a probe of similar design at any other field.  
 Of course, there are some limitations on the accuracy of the prediction, particularly if it is for a 
radically different frequency or temperature than that for which the reference /2 and P were obtained, but 
even then the prediction should be quite useful, subject to a few more limitations mentioned shortly.  (And 
yes, the applet appears to be asking for some of the same information twice, but only what is needed to 
calculate performance at a field different from that for which calibration data are known.) 
 
 After entering the pulse width numbers needed for calibration, the following inputs are needed to 
calculate the expected S/N following a single /2 pulse for the conditions of interest.  
 
 Sample [HMB, glycine, H2O, …other] 
 nuclide abbreviation (e.g., 103Rh)  
 B0, polarizing field [T]  
 90, /2 pulse length [s] 
 
  (Note: Here, you may enter any number you wish for 90.  The purpose here is simply so the applet can 
calculate the power required the /2 pulse used.  At this point, it has no effect on the calculated S/N.  The 
circuit efficiency has already been determined from the probe calibration data and any needed scaling.)  
 
 VS, active sample volume [mL] 
 TS, sample temperature [K]  
 TR, mean temperature of coils and capacitors [K]  
 mm, sample molecular mass 
 , sample density [g/mL] 
 ne, number of equivalent sites in the spectral line of interest 
 a, nuclide abundance, %  
 X, sample concentration, %  
 FWHM, expected experimental linewidth, [Hz] 
 NF, system noise figure, dB  
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 number of scans, n 
 Cross polarization (Y, N) 
 
 The largest uncertainty in the predicted S/N often comes from uncertainty in the linewidth, and the 
next largest source of error is likely to be VS.  The nuclide abundance a is the % abundance of the nuclide 
of interest at the site of interest. (If the sample is not labeled, then the appropriate number here is the 
natural abundance, which appears as the default.) The sample concentration X is the molar % of the 
molecule of interest in the solvent (or matrix).   
 There may be other factors that need to be taken into account, as optimum experiments often don’t 
use 900 pulses with delay between scans of more than 4T1 to permit full relaxation, but those are normally 
minor corrections and are not addressed in this applet.  
 The /2 pulse width is always somewhat dependent on sample volume because of B1 field 
inhomogeneity and possibly sample loading, but there is not a good way to account for that in a simple 
program.  So if the active sample volume (or its conductivity) for which one wishes to find the S/N is 
significantly different from the volume that was used in characterizing the probe’s 90 and P to start with, 
some adjustment in the initial inputs may be needed.  For example, if the input 90 was with a sample that 
extended well beyond the homogeneous field and the new VS is for a small sample that is confined just to 
the center of the coil, and in both cases the sample losses are small compared to other losses (as is often 
the case), a reasonable correction would be to assume the 90 is 20% smaller for the same P in the center 
of the coil.  
 The calculation takes into account the normal frequency and temperature dependences of QL 
subject to the assumption that sample losses are small compared to circuit losses, as is usually the case 
with small samples.  The program doesn’t know or care what the Q actually is, just how it changes from the 
reference calibration conditions to the new conditions, so that ratio is shown.  If for some reason you know it 
is not right (for example, because the new sample losses are very different) you may wish to make an 
appropriate correction in the predicted S/N.  
 There will increasingly be more use of novel methods for increasing the polarization compared to 
thermal – especially Dynamic Nuclear Polarization, paramagnetic hydrogen, hyperpolarized Xenon, and 
probably others.  For now, these effects are left for the user to add.  In all cases, all of the basic NMR 
factors included in this calculator are still completely relevant and establish the starting point for S/N 
calculations.  The theory behind the calculator is presented in the following section, but you don’t need to 
worry about these details to use the calculator.  
 
 
 EPR S/N. The NMR S/N calculator should also (in principle) work for pulsed EPR by entering e- for 
the nuclide abbreviation.  Some limitations in EPR would be actually knowing a /2 pulse length, linewidth, 
effective NF, and P, partly because the microwave power incident on the EPR cavity is often much less than 
that leaving the source, and the effective NF must take into account the effects of the circulator, to mention 
but a few of the complicating factors.  
 
 
 NMR S/N Theory. The classic derivations give the NMR S/N from a single 900 pulse (at thermal 
equilibrium) with an optimum filter [1/() = T2

*, the effective transverse relaxation time] and quadrature 
reception as:  

  
    2/32/1

*
2

2/3
0

2 1

12

2
1000/ 


SLF

PRS

xxS

B

VQ
TTT

TIIn

k
NS 






























   (1) 

 
where   is Plank’s constant divided by 2, 0 is the permeability of free space, k B is Boltzmann’s constant, 
ns is the number of spins at resonance per Liter in the spectral line,  is the magnetogyric ratio, Ix is the spin 
quantum number, T2* is calculated from the actual linewidth (not just the spin-spin relaxation time), TS is the 
sample temperature, TR is the temperature of the circuit resistance (coil and capacitors), TP is the effective 
preamp noise temperature, E is the rf efficiency (fraction of power dissipated in the coil and sample), F is 
the magnetic filling factor (classic definition), QL is the loaded and matched circuit quality factor, VS is the 
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sample volume [mL], and  is the Larmour precession frequency, B0 [1-6].   The factor of 1000 is required 
when everything is SI except as noted above.  
 Equation (1) ignores radiation damping, but that is never a problem when single-pulse S/N is not 
very high.  Equation (1) also requires some modification when the linewidth is greater than the probe 
resonance width, that is, when  > /2QL, but those conditions are rare.  The changes in T1 and T2 as the 
temperature is reduced usually means the optimum temperature (particularly when signal averaging is 
required) is not simply the lowest that can be obtained.  Equation 1 does not take into account the effect of 
T1 on multiple acquisitions.  Equation (1) also does not explicitly include the effect of the cable between the 
probe circuit and the preamp. It should appear as an additional additive term along with TR and TP, that can 
usually easily be made small compared to TR, except in cryoprobes. 
 Review of the probe development literature reveals that many prior efforts have not paid sufficient 
attention to maximizing F, E, T2*, and VS, and to minimizing TR.  Part of the reason is that prior to the 
advent of modern full-wave EM software (available only since circa 2005, give or take), it has been very 
difficult to accurately determine F, magnetic filling factor,  
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where U is the total peak magnetic energy of the sample coil at resonance, B1 is the transverse component 
of the magnetic field, and the integration in the numerator is over the sample space.  Also, prior to the 
availability of good circuit simulation tools (since ~1990), it was not easy to determine E, rf circuit efficiency, 
in complex circuits, and many old-school probe designers have been slow to take advantage of modern 
software.  One can find published examples of cases where either (and maybe even both) of these factors 
is an order of magnitude below what is possible in a more optimized design. Some solids probe design 
efforts have also not paid sufficient attention to coil effects on B0 inhomogeneity, and hence T2*. 
 Because of the general difficulty in calculating F, an alternative starting point often works better.  
When the wavelength is large compared to the sample dimensions (the usually case in NMR), it can be 
shown that the mean B1 [T] is given by the following, which also serves to define , a dimensionless 
magnetic effectiveness determined solely by the coil geometry.   
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where the frequency fM  here is in MHz and the coil volume VC is in mL.  The magnetic filling factor F of the 
sample coil can be shown to be given (exactly for uniform B1, where  can be defined) by the following [6]:  
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Combining the two above equations gives the product EFQL needed in eq. (1):  
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B1 is readily determined from the NMR measurement by the following: 

     
90

1 2


B        (6) 

 The last two terms of equation (1) can now be re-cast into a form that is often more convenient, 
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and the following expression for single-pulse S/N can then be written: 
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Of course, equations 1 and 8 give identical results, and in either case a correction factor of 0.7 is 
required for linear polarization.  In both cases, T2* is calculated from 1/, where  is the FWHM 
linewidth.  Equation (8) is often preferred initially; but after the product EFQL is determined from equation 
(5), equation (1) is generally more convenient for predicting performance for other nuclides or conditions, as 
it does not require knowledge of the experimental P and  90.   

The product EFQL is not a constant for a given probe and circuit, but it is generally sufficiently 
predictable to permit very good extrapolations.  The second term in it is quite constant over a very wide 
range of frequencies, and the first term is usually fairly constant for a given circuit, though often increasing a 
little at the upper end of the normal tuning range.  In NMR probes will small samples, the losses that 
determine QL are usually mostly in the coils and leads.  Their inductance is constant, so their Q’s would 
increase as f1/2 and as roughly TR

-0.8 over the temperature range from 80-500 K.  However, the capacitor 
losses (which typically account for 25% of the losses) have inverse dependence on frequency and usually 
no temperature dependence.  Likewise, the solder junction losses, which are often ~10% of the total, are 
constant with temperature.  A reasonable estimate then of the EFQL product at the frequency, 
temperature, and sample volume of interest then would be  
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where the “0” subscripts denote the values at the reference conditions (from eq. 5), and the “..2” subscripts 
denote the values at the new conditions of interest.  

Published papers usually do not report many of the parameters needed in eq. (1), but if the mean 
/2 pulse length90 for VS is reported at a given power P, the sensitivity of the probe can be determined quite
accurately for a wide range of conditions – often subject primarily to some uncertainty in ns, T2*, VS, and TR.
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 To access the S/N calulator:   https://dotynmr.com/snr/




